Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Клочков Юрий Семеринистерство науки и высшего образования российской Должность: и.о. ректора ФЕДЕРАЦИИ

Дата подписания: 12.11.2025 10:01:51

Уникальный программный ключ: 4e7c4ea90328ec8e65c5d805854945345494640E ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ИНДУСТРИАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА

дисциплины: Интеллектуальные технологии геомоделирования в геологии и геокриологии

направление подготовки: 05.04.01 - Геология

направленность (профиль): Интеллектуальные технологии геомоделирования в геологии и геокриологии.

форма обучения: очная

Рабочая программа рассмотрена на заседании кафедры криологии Земли Протокол № 1 от 03. 09. 2025 г.

1. Цели и задачи дисциплины

Цель изучения дисциплины: освоение теоретически основ интеллектуального анализа данных и приобретение практических умений применять программные средства интеллектуального анализа в задачах обработки и моделировании геологических и геокриологических данных.

Задачи дисциплины:

- Изучение теоретических основ машинного обучения и искусственных нейронных сетей;
- Освоение базовых алгоритмов машинного обучения и интеллектуального анализа в библиотеках Python;
- приобретение умений и опыта применения алгоритмов машинного обучения и нейронных сетей для решения геологических и геокриологических задач на примере анализа гидрогеологических данных и космоснимков.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина относится к блоку 1 части учебного плана, формируемой участниками образовательных отношений.

Необходимыми условиями для освоения дисциплины являются

знания: математических методов моделирования в геологии, геологических, геокриологических, геофизических методов исследований геологических объектов;

умения: разрабатывать программы и устанавливать модули анализа данных на языке Python;

владения: основами программирования на языке Python, технологии геоинформационных систем, базовыми информационными технологиями.

Содержание дисциплины служит основой для освоения дисциплин «Системы поддержки принятия решений в геологии и геокриологии», выполнения и защиты выпускной квалификационной работы.

3. Результаты обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Таблица 3.1

Код и наименование компетенции	Код и наименование индикатора достижения	Код и наименование результата обучения по		
,	компетенции (ИДК)	дисциплине (модулю)		
ПКС-4 Способность	ПКС 4.1	31. Знает: теоретические		
самостоятельно проводить	Использование	основы машинного обучения и		
научные исследования с	геоинформационных	искусственного интеллекта в		
помощью современного	технологий в задачах	геомоделировании		
оборудования,	исследования, моделирования и	У1: умеет: подключать и		
информационных	проектирования разработки	использовать имеющиеся и		
технологий, с	геологических объектов	разрабатывать новые модули		
использованием новейшего		интеллектуального анализа		
отечественного и		геоданных в QGIS		
зарубежного опыта		В1: владеет навыками		
		применения алгоритмов		
		машинного обучения в Python		
ПКС-5	ПКС 5.1	32. Знает: основные методы		
Способность обобщать и	Использовать методы Data	Data Mining		
использовать результаты	Mining для выявления скрытых	У2: Умеет: использовать в		

исследований для	связей и закономерностей в	геологических	задачах
выявления новых явлений,	геолого-геофизических данных	программные	инструменты
закономерностей, законов и		Data Mining	
теоретических положений в		В2: Владе	ет: навыками
области своей научной		использования	открытых
специальности		алгоритмов I	Data Mining в
		прикладных за	ідачах

4. Объем дисциплины

Общий объем дисциплины составляет 4 зачетных единицы, 144 часов.

Таблица 4.1.

Форма	Курс/	Аудитор	оные занятия/кон час.	тактная работа,	Самостоятельна	Контроль	Форма
обучения	семестр	Лекци	Практически е занятия	Лабораторны е занятия	я работа, час.		промежуточной аттестации
очная	2/3	12	-	24	72	36	Экзамен

5. Структура и содержание дисциплины

5.1. Структура дисциплины - очная форма обучения (ОФО)

Таблица 5.1.1

1.0	C					CDC	l D		Гаолица 5.1.1
No	Структур	а дисциплины	-	иторн		CPC,	Всего,	Код	Оценочные
Π/Π		_		тия, ч		час.	час.	ИДК	средства
	Номер	Наименование раздела	Л.	Пр.	Лаб.				
	раздела								
1	1.	Введение в	2		4	12	18	ПКС-	Лабораторные
		искусственный интеллект						4.1	работы,
		(ИЙ) и интеллектуальные							коллоквиум
		технологии							
2	2.	Машинное обучение и	2		4	12	18	ПКС-	Лабораторные
		алгоритмы ИЙ в						5.1	работы,
		геомоделировании							коллоквиум
3	3.	Обработка и интеграция	2		4	12	18	ПКС-	Лабораторные
		_	_			1-	10	4.1	работы,
		геоданных с							коллоквиум
	4	применением ИИ	_			1.0	10	HIAG	
	4.	Большие языковые	2		4	12	18	ПКС-	Лабораторные
		модели и естественно-						5.1	работы, коллоквиум
		языковая обработка в							коллоквиум
		геологии							
	5.	Применение	2		4	12	18	ПКС-	Лабораторные
		компьютерного зрения в						5.1	работы,
		задачах анализа							коллоквиум
		геоданных							
	6.	Практическое	2		4	12	18	ПКС-	Лабораторные
		-	-		'	12		4.1	работы,
		применение ИИ в							коллоквиум
		интеллектуальном							
		геомоделировании							
Экза	мен					36	36	ПКС-	Вопросы к
								4.1,	экзамену
								ПКС-	

					5.1	
Итого:	12	24	108	144		

5.2. Содержание дисциплины.

5.2.1. Содержание разделов дисциплины (дидактические единицы).

№ п/п	Наименование раздела дисциплины	Содержание раздела дисциплины
1	Введение в искусственный интеллект (ИИ) и интеллектуальные технологии	Основные понятия и история развития ИИ Роль ИИ в современной геологии и геокриологии Примеры применения интеллектуальных технологий
2	Машинное обучение и алгоритмы ИИ в геомоделировании	Классификация алгоритмов машинного обучения Обучение моделей на геологических данных Практические задачи классификации и прогнозирования
3	Обработка и интеграция геоданных с применением ИИ	Методы сбора и подготовки разнородных данных Инструменты для автоматизации обработки данных Технологии объединения данных в единую модель
4	Большие языковые модели в практических задачах геологии и природопользования	Применение LLM для анализа текстовых и мультимедийных данных Технология Retrieval-Augmented Generation (RAG) Примеры использования в геологии и природопользовании
5	Применение компьютерного зрения в задачах анализа геоданных	Инструменты Python для компьютерного зрения. Применение компьютерного зрения в задачах анализа геоданных. Обработка и интерпретация спутниковых и аэрофотоснимков. Обработка фотографий керна.
6	Практическое применение ИИ в интеллектуальном геомоделировании	Решение типовых задач с использованием ИИ-инструментов Обсуждение преимуществ и ограничений технологий Перспективы развития и внедрения инноваций

5.2.2. Содержание дисциплины по видам учебных занятий.

Лекционные занятия

Таблина 5 2 1

					1 аолица 3.2.1	
	Но	O	бъем, ч	iac.		
№ п/п	мер раз дел а дис цип лин ы	ОФО	3Ф О	ОЗФО	Тема лекции	
1	1	2			Введение в искусственный интеллект (ИИ) и интеллектуальные технологии	
2	2	2			Машинное обучение и алгоритмы ИИ в геомоделировании	
3	3	2			Обработка и интеграция геоданных с применением ИИ	
4	4	2			Большие языковые модели и естественно-языковая обработка в геологии	
5	5	2			Применение компьютерного зрения в задачах анализа геоданных	
6	6	2			Практическое применение ИИ в интеллектуальном геомоделировании	

Итого:	12		

Практические занятия

Практические занятия учебным планом не предусмотрены

Лабораторные работы

Таблица 5.2.2

	Номер	O	бъем, ч	ac.				
$\mathcal{N}_{\underline{0}}$	раздела		ЗФО	ОЗФ	Τονο ποδοροποργιού ροδοπι			
Π/Π	дисципли	ОФО		O	Тема лабораторной работы			
	ны							
1	1	4			Среда Python с библиотеками машинного обучения			
					(scikit-learn, pandas, matplotlib и др.).			
2	2	4			Знакомство с алгоритмами классификации (k-			
					ближайших соседей) на учебном геологических			
					датасете.Визуализация результатов классификации			
					типов горных пород.			
		4			Обработка и интеграция геологических данных			
					Загрузка и предварительная обработка разнородных			
3	3				данных (таблицы, CSV, GIS-данные).			
					Объединение и очистка данных для дальнейшего			
					анализа и моделирования.			
		4			Использование больших языковых моделей (LLM)			
4	4				Поиск и анализ геологических текстов с			
+					применением открытых LLM. Создание запросов к			
					модели и интерпретация полученных ответов.			
		4			Инструменты Python для компьютерного зрения:(OpenCV			
5	5				TensorFlow, Keras Pillow (PIL), ImageAI). Анализ			
					космсников. Анализ фото керна.			
6	6	4			Итоговый проект			
	Итого:	24						

Самостоятельная работа студента

Таблица 5.2.3

	Номер	06	бъем, ча	ac.		
№ π/π	раздел а дисцип лины	ОФО	3ФО	ОФО	Тема	Вид СРС
1.	1.	12			Введение в искусственный	Подготовка отчета по
					интеллект (ИИ) и	лабораторной работе,
					интеллектуальные технологии	подготовка к
						коллоквиуму
2.	2.	12			Машинное обучение и	Подготовка отчета по
					алгоритмы ИИ в	лабораторной работе,
					геомоделировании	подготовка к
						коллоквиуму
3.	3.	12			Обработка и интеграция	Подготовка отчета по
					геоданных с применением ИИ	лабораторной работе,
						подготовка к

					коллоквиуму
4.	4.	12		Большие языковые модели и естественно-языковая обработка в геологии	Подготовка отчета по лабораторной работе, подготовка к коллоквиуму
5	5	12		Применение компьютерного зрения в задачах анализа геоданных	Подготовка отчета по лабораторной работе, подготовка к коллоквиуму
6	6	12		Практическое применение ИИ в интеллектуальном геомоделировании	Подготовка отчета по лабораторной работе, подготовка к коллоквиуму
Итого:		72			

- 5.2.3. Преподавание дисциплины ведется с применением следующих видов образовательных технологий:
 - выполнение практических заданий, проектов (лабораторные занятия);
 - работа в малых группах (лабораторные занятия);
 - разбор практических ситуаций (лекционные занятия).

6. Тематика курсовых работ/проектов

Курсовые работы/проекты учебным планом не предусмотрены.

7. Контрольные работы

Контрольные работы/проекты учебным планом не предусмотрены.

7. Оценка результатов освоения дисциплины

- 8.1. Критерии оценивания степени полноты и качества освоения компетенций в соответствии с планируемыми результатами обучения приведены в Приложении 1.
- 8.2. Рейтинговая система оценивания степени полноты и качества освоения компетенций обучающихся очной формы обучения представлена в таблице 8.1.

Таблица 8.1

№	Виды контрольных мероприятий текущего контроля	Баллы
	1 аттестация	
1.	Защита лабораторных работ № 1-3	0-30
2.	Коллоквиум1	0-20
	ИТОГО за первую аттестацию	0-50
	2 аттестация	
3.	Защита лабораторных работ № 4-6	0-30

4.	Коллоквиум 2	0-20
	ИТОГО за вторую аттестацию	0-50
		0-100

8. Учебно-методическое и информационное обеспечение дисциплины

- 9.1. Перечень рекомендуемой литературы представлен в Приложении 2.
- 9.2. Современные профессиональные базы данных и информационные справочные системы:
- 1. Полнотекстовая база данных <u>eLibrary.ru</u> [Электронный ресурс]. URL: http://www.tsogu.ru/lib
- 2. Электронные версии основной учебной литературы и методических указаний для выполнения лабораторных работ и отчетов по практике, записанные на электронных носителях (CD, DVDи др.)
- 3. Система поддержки обучения [Электронный ресурс]. URL:

http://educon.tsogu.ru:8081/login/index.php

- 4. ТИУ «Полнотекстовая БД» на платформе ЭБС ООО «Издательство ЛАНЬ»;
- 5. Предоставление доступа к ЭБС от ООО «ЭБС ЛАНЬ».
- 6. Электронно-библиотечная система IPRbooks с ООО «Ай Пи Эр Медиа».
- 7. Предоставление доступа к ЭБС от ООО «Политехресурс».
- 8. Предоставление доступа к ЭБС от ООО «ПРОСПЕКТ».
- 9. Предоставление доступа к ЭБС от ООО «РУНЭБ».
- 10. AI-Geostats http://www.ai-geostats.org/.
- 11. Arizona university geostats page http://www.u.arizona.edu/~donaldm/homepage/whatis.html.
- 9.3. Лицензионное и свободно распространяемое программное обеспечение, в т.ч. отечественного производства:
 - 1. VS Code
 - 2. PyCharm Community Edition.

9. Материально-техническое обеспечение дисциплины/модуля

Помещения для проведения всех видов работы, предусмотренных учебным планом, укомплектованы необходимым оборудованием и техническими средствами обучения.

Таблина 10.1

			тиолици то.т
No	Наименование учебных	Наименование помещений для проведения всех	Адрес (местоположение)
Π/Π	предметов, курсов,	видов учебной деятельности, предусмотренной	помещений для проведения всех
	дисциплин (модулей),	учебным планом, в том числе помещения для	видов учебной деятельности,
	практики, иных видов	самостоятельной работы, с указанием перечня	предусмотренной учебным планом
	учебной деятельности,	основного оборудования, учебно- наглядных	(в случае реализации
	предусмотренных	пособий	образовательной программы в
	учебным планом		сетевой форме дополнительно
	образовательной		указывается наименование
	программы		организации, с которой заключен
			договор)
1	Интеллектуальные	Лекционные занятия:	625000, Тюменская область, г.
	технологии	Учебная аудитория для проведения занятий	Тюмень, ул. Володарского, д.56
	геомоделирования в	лекционного типа; групповых и	
	геологии и геокриологии	индивидуальных консультаций; текущего	
		контроля и промежуточной аттестации,	
		Учебная мебель: столы, стулья, доска	
		аудиторная.	

Компьютер в комплекте – 1 шт., проектор – 1	
шт., экран – 1 шт.	
Лабораторные занятия:	625000, Тюменская область, г.
Учебная аудитория для проведения лаборатоных занятий семинарского типа (практические	Тюмень, ул. Володарского, д.56
занятия); групповых и индивидуальных	
консультаций; текущего контроля и	
промежуточной аттестации,	
Учебная мебель: столы, стулья, доска аудиторная.	
Моноблок - 1 шт., проектор - 1 шт., акустическая	
система (колонки) - 4 шт., проекционный экран -	
1 шт., документ-камера - 1 шт., телевизор - 2 шт.	

10. Методические указания по организации СРС

11.1. Методические указания по подготовке к лабораторным занятиям

При выполнении заданий студент руководствуется правилами, изложенными преподавателем при постановке задачи на занятии и в описании работы. Кроме того, должен активно использоваться материал, изложенный на лекциях, и привлекаться дополнительная специальная литература, использовать учебную литературу, рекомендованную преподавателем, лекционный материал. Обучающиеся должны понимать содержание лабораторной работы (знать определения понятий, уметь разъяснить значение и смысл любого термина и действия, выполненного в работе и т.п.).

11.2. Методические указания по организации самостоятельной работы.

Самостоятельная работа включает в себя работу с конспектом лекций, подготовку отчетов по лабораторным работам, подготовку к коллоквиумам. Контроль результатов внеаудиторной самостоятельной работы обучающихся осуществляется в пределах времени, отведенного на обязательные учебные занятия по дисциплине

Планируемые результаты обучения для формирования компетенции и критерии их оценивания

Дисциплина <u>Интеллектуальные технологии геомоделирования в геологии и геокриологии</u> Код, направление подготовки <u>05.04.01 - Геология</u> Направленность (профиль) <u>Интеллектуальные технологии геомоделирования в геологии и геокриологии.</u>

Код компетенции	Код и наименование результата обучения по	Критерии оценивания результатов обучения			
	дисциплине	1-2	3	4	5
ПКС-4 Способность самостоятельно проводить научные исследования с помощью современного оборудования, информационных технологий, с использованием новейшего отечественного и	31. Знает: теоретические основы машинного обучения и искусственного интеллекта	Не знает теоретические основы машинного обучения и искусственного интеллекта	Демонстрирует отдельные знания об теоретических основах машинного обучения и искусственного интеллекта	Знает основные положения теоретических основ машинного обучения и искусственного интеллекта	Знает исчерпывающе теоретические основы машинного обучения и искусственного интеллекта
зарубежного опыта	У1: умеет: подключать и использовать имеющиеся и разрабатывать новые модули интеллектуального анализа геоданных в QGIS В1: владеет навыками применения алгоритмов машинного обучения в Python	Не умеет подключать и использовать имеющиеся и разрабатывать новые модули интеллектуального анализа геоданных в QGIS Не владеет навыками применения алгоритмов машинного обучения в Python	Умеет в отдельных случаях подключать и использовать имеющиеся и разрабатывать новые модули интеллектуального анализа геоданных в QGIS Владеет частично навыками применения алгоритмов машинного обучения в Python	Умеет самостоятельно по изученному образцу подключать и использовать имеющиеся и разрабатывать новые модули интеллектуального анализа геоданных в QGIS Владеет основными навыками применения алгоритмов машинного обучения в Python	Умеет самостоятельно в условиях новых данных и задач подключать и использовать имеющиеся и разрабатывать новые модули интеллектуального анализа геоданных в QGIS Самостоятельно осваивает новые навыки применения алгоритмов машинного обучения в Руthon
	32. Знает: основные методы Data Mining	He знает методы Data Mining	Демонстрирует отдельные знания об основных методах Data Mining	Знает основные методы Data Mining	Знает исчерпывающе методы Data Mining

ПКС-5 Способность обобщать и использовать результаты исследований для выявления новых явлений, закономерностей, законов и теоретических положений в области своей научной специальности	У2: умеет: использовать в геологических задачах программные инструменты Data Mining	Не умеет использовать в геологических задачах программные инструменты Data Mining	Умеет в отдельных случаях использовать в геологических задачах программные инструменты Data Mining	Умеет самостоятельно по изученному образцу использовать в геологических задачах программные инструменты Data Mining	Умеет самостоятельно в условиях новых данных и задач использовать в геологических задачах программные инструменты Data Mining
	В2: Владеет: навыками использования	Не владеет навыками использования	Владеет частично навыками использования	Владеет основными навыками использования	Самостоятельно осваивает новые навыки
	открытых алгоритмов Data Mining в прикладных задачах	открытых алгоритмов Data Mining в прикладных задачах	открытых алгоритмов Data Mining в прикладных задачах	открытых алгоритмов Data Mining в прикладных задачах	использования открытых алгоритмов Data Mining в прикладных задачах

КАРТА

обеспеченности дисциплины (модуля) учебной и учебно-методической литературой

Дисциплина <u>Интеллектуальные технологии геомоделирования в геологии и геокриологии</u> Код, направление подготовки <u>05.04.01 - Геология</u>

Направленность (профиль) Интеллектуальные технологии геомоделирования в геологии и геокриологии.

п/п	Название учебного, учебно- методического издания, автор, издательство, вид издания, год издания	Количеств о экземпляр ов в БИК	Контингент обучающихся, использующи х указанную литературу	Обеспеченность обучающихся литературой, %	Наличие электронного варианта в ЭБС (+/-)
	Воронова, Л. И. Масhine Learning: регрессионные методы интеллектуального анализа данных : учебное пособие / Л. И. Воронова, В. И. Воронов. — Москва : Московский технический университет связи и информатики, 2018. — 82 с. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/81325.html	Э Р*	30	100	+
	Кук, Д. Машинное обучение с использованием библиотеки Н2О / Д. Кук; перевод с английского А. Б. Огурцова. — Москва: ДМК Пресс, 2018. — 250 с. — ISBN 978-5-97060-508-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/97353		30	100	+
	Коэльо, Л. П. Построение систем машинного обучения на языке Руthon / Л. П. Коэльо, В. Ричарт ; перевод с английского А. А. Слинкин. — 2-е изд. — Москва : ДМК Пресс, 2016. — 302 с. — ISBN 978-5-97060-330-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/82818	Э Р*	30	100	+

ЭР* - электронный ресурс без ограничения числа одновременных подключений к ЭБС.